0%

六阶段冥想,顾名思义冥想要有意识地分成六个阶段。

  • 第一阶段是:怜悯。所有人在自己的生命里都需要爱与理解。这个阶段,是帮助你以温柔之心待人、待己,让自己沉浸予宽容中。
  • 第二阶段是:感恩。我们或许有许多目标要追寻,但重要的是感恩当下,感恩我们一路走来所取得的成就与进展。这与我们的快乐及幸福水平紧密相关。
  • 第三阶段是:原谅。与世界和平相处,和周围人自在共生。心无嫌隙,内在清明。这是让我们保持平静的关键。
  • 第四阶段是:梦想。梦想将为你的生命注入强大的动力,牵引你向前飞奔,去往你向往的远方。
  • 第五阶段是:完美一天。这个阶段将带给你对于一天的掌控感,让你未来的梦想变成一步步当下即可落地执行的行动。
  • 第六阶段是:力量。我们需要感受到支持和心安,知道无论未来多么遥远、多么艰辛,一切终会无恙。

来源:微信公众号推文

Information

  • Title: Attention Consistency on Visual Corruptions for Single-Source Domain Generalization
  • Author: Ilke Cugu, Massimiliano Mancini, Yanbei Chen, Zeynep Akata
  • Institution: 作者单位不知道
  • Year: 2022
  • Journal: IEEE Computer Vision and Pattern Recognition Workshops (CVPRW), 2022
  • Source: OpenAccess, Arxiv, OfficialCode
  • Cite: Ilke Cugu, Massimiliano Mancini, Yanbei Chen, Zeynep Akata; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2022, pp. 4165-4174
  • Idea: 原图与腐蚀图像的 CAM 图应该一致,即注意力集中在相同区域
阅读全文 »

Information

  • Title: Learn-to-Decompose: Cascaded Decomposition Network for Cross-Domain Few-Shot Facial Expression Recognition
  • Author: Xinyi Zou, Yan Yan, Jing-Hao Xue, Si Chen, and Hanzi Wang
  • Institution: 厦门大学
  • Year: 2022
  • Journal: European Conference on Computer Vision (ECCV)
  • Source: official code, Arxiv, Springer
  • Cite: Zou, Xinyi, et al. "Learn-to-Decompose: Cascaded Decomposition Network for Cross-Domain Few-Shot Facial Expression Recognition." European Conference on Computer Vision. Springer, Cham, 2022.
  • Idea: 设计了一种级联的解耦网络用于跨域小样本学习
阅读全文 »

Information

  • Title: Domain Generalization via Frequency-domain-based Feature Disentanglement and Interaction
  • Author: Wang, Jingye and Du, Ruoyi and Chang, Dongliang and Liang, KongMing and Ma, Zhanyu
  • Institution: 北京大学
  • Year: 2022
  • Journal: ACM International Conference on Multimedia (ACM MM 2022)
  • Source: ACM, Offical Code, ArXiv
  • Cite: Jingye Wang, Ruoyi Du, Dongliang Chang, Kongming Liang, and Zhanyu Ma. 2022. Domain Generalization via Frequency-domain-based Feature Disentanglement and Interaction. In Proceedings of the 30th ACM International Conference on Multimedia (MM '22). Association for Computing Machinery, New York, NY, USA, 4821–4829. https://doi.org/10.1145/3503161.3548267
  • Idea: 将图像在频域上进行分解得到低频特征和高频特征再进行交互用于提高域泛化
阅读全文 »

Information

  • Title: Domain Generalization through Audio-Visual Relative Norm Alignment in First Person Action Recognition
  • Author: Mirco Planamente, Chiara Plizzari, Emanuele Alberti, Barbara Caputo
  • Institution: Politecnico di Torino, Istituto Italiano di Tecnologia, CINI Consortium
  • Year: 2022
  • Journal: WACV
  • Source: Arxiv, Open Access
  • Cite: Mirco Planamente, Chiara Plizzari, Emanuele Alberti, Barbara Caputo; Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2022, pp. 1807-1818
  • Idea: 提出通过范数对齐的方法来进行不同模态间的重平衡
阅读全文 »

Information

  • Title: MetaNorm: Learning to Normalize Few-Shot Batches Across Domains
  • Author: Yingjun Du, XianTong Zhen, Ling Shao, Cees G. M. Snoek
  • Institution: AIM Lab, University of Amsterdam
  • Year: 2021
  • Journal: ICLR
  • Source: OpenReview, Offical Code(PS: 截止 2022.12.21 仓库还是空的)
  • Cite: Du, Yingjun, et al. "Metanorm: Learning to normalize few-shot batches across domains." International Conference on Learning Representations. 2020.
  • Idea: 提出了元归一化用于少样本学习和域泛化
阅读全文 »

Information

  • Title: Orthogonal Transformer: An Efficient Vision Transformer Backbone with Token Orthogonalization
  • Author: 黄怀波, 周晓强 , 赫然
  • Institution: 中国科学院自动化研究所,中国科学院大学,中国科学技术大学
  • Year: 2022
  • Journal: NeurIPS
  • Source: PDF, Offical Code (截至本文完成还是空的), openreview
  • Cite: Huang H, Zhou X, He R. Orthogonal Transformer: An Efficient Vision Transformer Backbone with Token Orthogonalization[C]//Advances in Neural Information Processing Systems.
  • Idea: 提出了正交 transformer,设计得很巧妙
阅读全文 »