题目
剑指
Offer 47. 礼物的最大价值
在一个 m*n
的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于
0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例 1:
输入:[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1->3->5->2->1 可以拿到最多价值的礼物
提示:
0 < grid.length <= 200
0 < grid[0].length <= 200
标签
数组, 动态规划, 矩阵
题解
【礼物的最大价值】动态规划&滚动数组优化
解析
很基础的动态规划了,相当于从左上角走到右下角,所经过的格子的数值总和。
又每次行动只能向下或向右移动一格,换句话说,一个格子只能由它的上方或左方走到,所以很容易得到状态转移方程:
\[
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
\]
其中 \(dp[i][j]\) 表示走到坐标为
\((i,j)\)
的格子所能拿到礼物的最大值,转移公式的含义是从上方 (\(dp[i - 1][j]\)) 和左方 (\(dp[i][j - 1]\))
选择能拿礼物多的那个路径,加上当前位置能拿礼物的价值,就是当前格子所能拿到礼物的最大值
动态规划
对于边界情况,我们有两种常用处理办法
- 单独初始化边界
- 多开一行一列数组,就能统一化边界处理
方法一、单独处理边界
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
| class Solution: def maxValue(self, grid: List[List[int]]) -> int: n, m = len(grid), len(grid[0]) dp = [[0 for _ in range(m)] for _ in range(n)]
dp[0][0] = grid[0][0] for i in range(1, m): dp[0][i] = dp[0][i - 1] + grid[0][i] for i in range(1, n): dp[i][0] = dp[i - 1][0] + grid[i][0]
for i in range(1, n): for j in range(1, m): dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j] return dp[n - 1][m - 1]
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
| class Solution { private static int[][] dp = new int[207][207]; public int maxValue(int[][] grid) { int n = grid.length, m = grid[0].length; dp[0][0] = grid[0][0]; for (int i = 1; i < m; ++i) dp[0][i] = dp[0][i - 1] + grid[0][i]; for (int i = 1; i < n; ++i) dp[i][0] = dp[i - 1][0] + grid[i][0]; for (int i = 1; i < n; ++i){ for (int j = 1; j < m; ++j){ dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; } } return dp[n - 1][m - 1]; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| class Solution { public: int maxValue(vector<vector<int>>& grid) { int n = grid.size(), m = grid[0].size(); vector<vector<int>> dp(n, vector<int>(m, 0)); dp[0][0] = grid[0][0]; for (int i = 1; i < m; ++i) dp[0][i] = dp[0][i - 1] + grid[0][i]; for (int i = 1; i < n; ++i) dp[i][0] = dp[i - 1][0] + grid[i][0]; for (int i = 1; i < n; ++i){ for (int j = 1; j < m; ++j){ dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]; } } return dp[n - 1][m - 1]; } };
|
方法二、多开一行一列数组,就能统一化边界处理,不过需要做坐标偏移,即
\(dp[i][j]\) 表示走到坐标为 \((i - 1,j - 1)\)
的格子所能拿到礼物的最大值,相比较上一种方法优点是编程实现更简单
1 2 3 4 5 6 7 8 9 10 11
| class Solution: def maxValue(self, grid: List[List[int]]) -> int: n, m = len(grid), len(grid[0]) dp = [[0 for _ in range(m + 1)] for _ in range(n + 1)]
for i in range(1, n + 1): for j in range(1, m + 1): dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1] return dp[n][m]
|
1 2 3 4 5 6 7 8 9 10 11 12 13
| class Solution { private static int[][] dp = new int[207][207]; public int maxValue(int[][] grid) { int n = grid.length, m = grid[0].length; for (int i = 1; i <= n; ++i){ for (int j = 1; j <= m; ++j){ dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1]; } } return dp[n][m]; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| class Solution { public: int maxValue(vector<vector<int>>& grid) { int n = grid.size(), m = grid[0].size(); vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0)); for (int i = 1; i <= n; ++i){ for (int j = 1; j <= m; ++j){ dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1]; } } return dp[n][m]; } };
|
- 时间复杂度: \(O(n \times m)\)
- 空间复杂度: \(O(n \times m)\)
滚动数组优化
考虑到 \(dp[i][j]\) 的值只与 \(dp[i-1][j]\) 和 \(dp[i][j-1]\)
有关,我们可以用一个一维数组来代替二维的数组
1 2 3 4 5 6 7 8 9 10 11
| class Solution: def maxValue(self, grid: List[List[int]]) -> int: n, m = len(grid), len(grid[0]) dp = [0 for _ in range(m + 1)]
for i in range(1, n + 1): for j in range(1, m + 1): dp[j] = max(dp[j], dp[j - 1]) + grid[i - 1][j - 1] return dp[m]
|
1 2 3 4 5 6 7 8 9 10 11 12 13
| class Solution { public int maxValue(int[][] grid) { int n = grid.length, m = grid[0].length; int[] dp = new int[m + 1]; for (int i = 1; i <= n; ++i){ for (int j = 1; j <= m; ++j){ dp[j] = Math.max(dp[j], dp[j - 1]) + grid[i - 1][j - 1]; } } return dp[m]; } }
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| class Solution { public: int maxValue(vector<vector<int>>& grid) { int n = grid.size(), m = grid[0].size(); vector<int> dp(m + 1, 0); for (int i = 1; i <= n; ++i){ for (int j = 1; j <= m; ++j){ dp[j] = max(dp[j], dp[j - 1]) + grid[i - 1][j - 1]; } } return dp[m]; } };
|
- 时间复杂度: \(O(n \times m)\)
- 空间复杂度: \(O(m)\)
记忆化dfs
这题也能用记忆化dfs求解,这里只展示python代码(cache装饰器对于记忆化dfs太友好惹~)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
| from functools import cache class Solution: def maxValue(self, grid: List[List[int]]) -> int:
@cache def dfs(i: int, j: int): if i == 0 and j == 0: return grid[i][j] elif i == 0: return dfs(i, j - 1) + grid[i][j] elif j == 0: return dfs(i - 1, j) + grid[i][j] else: return max(dfs(i - 1, j), dfs(i, j - 1)) + grid[i][j]
return dfs(len(grid) - 1, len(grid[0]) - 1)
|
- 时间复杂度: \(O(n \times m)\)
- 空间复杂度: \(O(n \times m)\)
如果对你有帮助的话,请给我点个赞吧~
欢迎前往 我的博客
或 Algorithm -
Github 查看更多题解